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Molecular dynamic simulations are reported for the static and dynamic properties of hard sphere fluids in
matrices (or media) composed of quenched hard spheres. The effect of fluid and matrix density, matrix
structure, and fluid to matrix sphere size ratio on the static and dynamic properties is studied using discon-
tinuous molecular dynamics. The matrix density has a stronger effect on the self-diffusion coefficient than the
fluid density, especially at high matrix densities where the geometric constraints due to the quenched spheres
are significant. When the ratio of the size of the fluid spheres to that of the matrix spheres is equal to or greater
than one, the diffusion increases as the fluid density is increased, at constant total volume fraction. This trend
is however reversed if the ratio is smaller than one. Different methods of generating the matrix have a very
strong effect on the dynamic properties even though the static correlations are similar. An analysis of the
single-chain structure factor of the particle trajectories shows a change in the particle diffusive behavior at
different time scales, suggestive of a hopping mechanism, although normal diffusion is recovered at long times.
At high matrix densities, there is considerable heterogeneity in the diffusion of the fluid particles. The simu-
lations demonstrate that the correlations in the matrix play a significant role on the diffusion of fluid spheres.
For example, the diffusion constant in matrices constructed by different methods can be an order of magnitude
different even though the pair correlation functions are almost identical.
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I. INTRODUCTION

The behavior of fluids in complex environments is of sig-
nificance in numerous situations ranging from analytical
separations and industry to the fundamentals of transport in
living cells and heterogeneous materials. For example, in
analytical separations one is interested in separating species
that are very similar in their physical properties by taking
advantage of small differences in their adsorption and trans-
port through a matrix, such as a gel or polymer solution. A
molecular understanding of the effect of the matrix structure
and interaction of the matrix with solutes on the adsorption
and transport can go a long way in establishing the relative
importance of structural and interaction effects on the ad-
sorption and dynamics of solutes. Despite the importance of
these systems, there has been very little theoretical or com-
putational research on the dynamics of fluids in static matrix.
In this paper we report molecular dynamics simulation re-
sults for the static and dynamic properties of hard sphere
fluids in matrices(or media) composed of quenched hard
spheres.

There is a large body of work on the behavior of random
walks in matrices composed of fixed obstacles. For a random
walk in a Euclidean space, the mean-square displacement
(MSD) is a linear function of time and the diffusion is re-
ferred to as normal or regular. In disordered systems, how-
ever, the diffusion can be anomalous, i.e., the MSDkr2l can
vary sublinearly with time askr2l, t2/dw with dw.2. The
constantdw is called the anomalous subdiffusion exponent,
and normal diffusion is recovered fordw=2. Percolation
theory has been used to describe diffusion in porous systems
[1–3] modeled as a collection of static obstacles. In the ab-
sence of obstacles, the diffusion is normal. For a low con-
centration of the obstacles, the cluster of unobstructed sites

(called a percolation cluster) is fractal over short distances
and homogeneous at large distances. In this case, since the
diffusion is self-similar at all length and time scales for a
fractal system, the diffusion is anomalous at short distances
and normal at larger distances. The characteristic distance
(time) scale where the diffusion changes from anomalous
subdiffusion to regular diffusion is called the crossover
length (time). As the obstacle concentration increases, the
crossover length increases, and at the percolation threshold
concentration of the obstacles, the crossover length(time)
diverges and the diffusion is anomalous over all distances
(times).

There are many experimental studies of the diffusion of
penetrants in disordered matrices, which support the qualita-
tive picture described above. The long-time translational
self-diffusion coefficient of spherical silica particles in po-
rous glasses[4] and random sphere packings[5] with vary-
ing pore size and ionic strength[6] has been studied using
dynamic light scattering and fluorescence recovery after pho-
tobleaching. The long-time tracer diffusion coefficient is
found to be uniquely dependent on the ratio of the tracer size
to the packing sphere sizeb, and vanishes whenb is larger
than ,0.15 for random close packing[5], since the tracer
cannot escape from the interstitial holes. The anomalous sub-
diffusive regime becomes dominant as the percolation
threshold is approached. Nuclear-magnetic-resonance mi-
croscopy studies of diffusion on quasi-two-dimensional
random-site percolation clusters[7], close to the percolation
threshold, suggest that normal diffusion limit is reached only
at very long times. Anomalous subdiffusive behavior has
also been observed for a variety of lipids and proteins in the
plasma membrane of cells, using single-particle tracking
measurements[8,9] and fluorescence photobleaching recov-
ery [10,11]. Anomalous subdiffusion has a major effect on
the mobility, and hence the kinetics of diffusion mediated
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systems. Many factors such as obstruction, binding, hydro-
dynamic interactions, etc., are believed to contribute to the
effects of membrane heterogeneities in lateral diffusion.

The long-time diffusion of solutes in disordered matrices
can be studied using field theoretic formulations. For ex-
ample, Chakrabortyet al. [12] have presented a theory that
describes the diffusion of ions in charged disordered matrices
using a path integral representation for the propagator
coupled with a field theory for the matrix. Using a variational
method, they calculated the diffusion coefficient for the case
of Gaussian spatial density fluctuations in the disorder. From
numerical solution of their equations and asymptotic analysis
they demonstrated a crossover from diffusive to subdiffusive
behavior as the strength(i.e., density) of the disorder was
increased, and suggested that the mechanism for ion motion
change from diffusion to hopping for high strengths of the
disorder[13]. This physical picture is consistent with other
theories[14]. More recently, Witkoskie, Yang, and Cao[15]
have investigated several approaches for Brownian motion in
dynamically disordered matrices. They investigated the be-
havior of a diffusing particle using perturbation theory, and
various treatments on the Martin-Siggia-Rose[16] func-
tional.

Despite the practical and theoretical importance of these
systems, there have been few computer simulation studies of
the dynamics of fluids in quenched matrices, and little is
known about the behavior of standard models. In fact, all the
simulation studies we are aware of have focussed on a single
solute in static matrices. Penetrant diffusion in glassy amor-
phous polymers has been studied using molecular dynamics
[17,18] (MD) and Monte Carlo[19] (MC) simulations. The
results indicate a hopping mechanism for the penetrants: the
penetrants dwell in the voids of the polymer matrix for con-
siderable time and perform fast jumps between neighboring
voids. Normal diffusion is reached at long times, but over
intermediate time scales an anomalous subdiffusive regime
exists. Diffusion of ionic particles in charged disordered ma-
trices indicates that the charge centers create deep traps that
capture the mobile particles. However, at long times the mo-
bile particles escape the traps and their motion between traps
is diffusive [20]. MC simulations of diffusion in zeolites
modeled as a network of well-defined sites also suggest a
hopping mechanism for the diffusing molecules[21–24].
Diffusion in porous random matrices has been studied using
Brownian dynamics simulations[25,26] and MC simulations
in two [11,27–29] and three dimensions[30,31]. Although
these simulation studies provide useful insight into the effect
of disordered matrices on the fluid diffusion at infinitely di-
lute concentration, the study of a single tracer particle ig-
nores the interaction between fluid particles themselves,
which plays a significant role even in simple fluids.

In this paper we present molecular dynamics simulation
results for the diffusion of hard spheres in a matrix of fixed
hard spheres. The choice of model allows us to focus on
excluded volume effects on the dynamics, and use a very
efficient discontinuous molecular dynamics algorithm to
evolve the system. We quantify the effect of matrix and fluid
density, the ratio of the size of the fluid spheres to that of the
matrix spheres, and the method of preparation of the matrix
on the dynamics of the hard sphere fluid. Naive extension of

existing theories for the diffusion of liquid mixtures is not in
good agreement with simulations.

The rest of the paper is organized as follows. The molecu-
lar model and simulation methods are presented in Sec. II.
The results are presented in Sec. III, and a summary and
some conclusions are presented in Sec. IV.

II. SIMULATION DETAILS

The simulation cell is a cube with periodic boundary con-
ditions in all directions. The fluid particles are modeled as
hard spheres of diameters f f, and the matrix is composed of
fixed hard spheres of diametersmm. Fluid spheres and matrix
spheres also interact via a hard sphere potential, with diam-
eter s fm=ss f f +smmd /2. The box lengthL is chosen to be
large enough for fluid particles to show the normal diffusive
behavior and contain enough fluid and matrix particles for
good statistics:L=11.026smm in most cases and 13.892smm
for high densities of the quenched spheres. The number of
matrix spheres,Nm, ranges from 128 to 1280 and the number
of fluid spheres,N, ranges from 128 to 1024. The box length
is adjusted to achieve the desired density. We also checked
for finite size effects for some systems by performing simu-
lations with simulation cells of different lengths and found
no significant differences.

The simulation temperatureT is defined by the equiparti-
tion theorem, which relates the temperature to the system
kinetic energy by

3

2
NkBT =

1

2o
i=1

N

mivi
2, s1d

wherekB is Boltzmann’s constant andmi is the mass of the
fluid particles. The particle kinetic energykBT affects only
the velocity distribution of fluid particles and is set to unity
in this study. In addition, the matrix hard sphere diameter
smm and the massmf of fluid particles are the units of length
and mass, respectively, and the unit of time istMD

;Îmfsmm
2 /kBT. These constants are set to unity in the re-

sults reported.
Starting with an initial configuration, the creation of

which is discussed shortly, the system is evolved using the
discontinuous molecular dynamics(DMD) simulation
method[32–34]. In this method, the system is evolved via
successive collisions. First, the time to the next collision is
calculated and all the fluid atoms are translated forward until
the collision occurs. Next, the postcollision velocities of the
colliding pair are determined from the dynamics of an elastic
collision. Finally, the properties of interest are calculated be-
fore returning to the first step. Since the time evolution is
exact up to the machine precision, DMD is stable over long
times. We use various optimization methods such as linked
lists and neighbor lists. With these optimization algorithms,
the computation time scales linearly with the number of par-
ticles in the system[33,34].

The simulation algorithm is similar to that of hard sphere
fluids. The collision timetij betweenith and j th particles is
given by
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ur i jst + tijdu = ur i j + vi j ti j u = si j , s2d

wherer i j =r i −r j, vi j =vi −v j, r i is the position of spherei, vi
is the velocity of spherei, andsi j is the hard-sphere diameter
between the two species. The resultingtij is

tij =
− bij − Îbij

2 − vi j
2sr ij

2 − si j
2d

vi j
2

, s3d

with bij =r i j ·vi j . Note thatbij will be less than zero if the
particles are going to collide. Post-collision velocities are
determined from conservation of kinetic energy and linear
momentum, i.e.,

vi
new= vi −

2mj

mi + mj
sr̂ i j ·vi jdr̂ i j , s4d

v j
new= v j +

2mi

mi + mj
sr̂ i j ·vi jdr̂ i j , s5d

where vi
new is the postcollision velocity of spherei, r̂ i j

=r i j / r ij is the unit vector ofr i j , andmi is the mass of particle
i. For collisions between fluid particles, wheremi =mj,

vi
new= vi −

bij

s f f
2 r i j , s6d

v j
new= v j +

bij

s f f
2 r i j . s7d

For collisions between fluid particles and matrix particles,
we assume that the mass of the matrix particle is infinite, and
in this case,

vi
new= vi −

2bij

s fm
2 r i j . s8d

The simulation starts with the generation of an initial con-
figuration. Several methods for the generation of the random
matrix are considered. In the major part of this study, the
disordered matrix is generated by randomly inserting hard
spheres into an empty simulation box and equilibrating this
system using DMD. The resulting configuration is quenched
(or fixed) and this serves as the disordered matrix for the
incoming fluid molecules. The fluid molecules are then in-
serted into the matrix. A random location in the simulation
cell is chosen, an attempt is made to insert a fluid sphere, and
the insertion is accepted if there is no overlap between the
sphere and other(fluid and matrix) spheres. This process
fails at high volume fractions where most random insertions
are unsuccessful. Therefore, at high volume fractions we em-
ploy the particle growth method[33,34], in which the fluid
molecules are randomly inserted, but with a smaller diameter
than desired. The diameter of each fluid sphere is grown
randomly along with standard Monte Carlo translation
moves until the desired particle size is achieved. The initial-
configuration generation method used is similar to the par-
ticle insertion and deletion moves used in grand canonical

Monte Carlo simulations, and might sample configuration
space not accessible to usual diffusion experiments such as
exclusion chromatography. There is therefore the possibility
that the configuration might not be ergodic if, for example, a
sphere is trapped in a region of matrix that is disconnected
from other regions. We find that this occurs when the matrix
volume fraction, fmf;pNmsmm

3 / s6L3dg, is approximately
greater than,0.20. This method of initial-configuration gen-
eration does mimic other experimental situations such as
vesicle trafficking in living cells. The initial configurations
are equilibrated using DMD until all fluid particles have
moved roughly half the box length.

Properties are averaged over several trajectories for each
realization of the disordered matrices, and then over several
matrix configurations. Starting from the resulting equili-
brated configurations, 1000 trajectories are stored at time in-
tervals Dtsample, chosen so that the fluid particles translate
less than the distanceL /Ns on average, whereNs=256 is the
bin size. Static properties such as pair-distribution functions
are calculated using the 1000 trajectories. Dynamic proper-
ties such as mean-square displacements are also obtained as
a function of time, with a maximum time ofNsDtsample. The
long-time self-diffusion coefficientD of fluid particles is cal-
culated from the mean-square displacementWstd of each par-
ticle using the Einstein relation, i.e.,

D = lim
t→`

Wstd
6t

= lim
t→`

kur ist + t0d − r ist0du2l
6t

, s9d

wherer i is the position of fluid particlei and t0 is an arbi-
trary initial time. Only data points fromsNs/2dDtsample to
NsDtsampleare used in calculatingD. The static and dynamic
properties obtained by the above procedure are only statisti-
cal averages of a particular realization of the disordered ma-
trices. To obtain matrix-averaged properties, the same proce-
dure is repeated for 8–32different realizations of the
matrices, depending on the matrix volume fraction. Error
bars in this paper correspond to one standard deviation of
the latter average.

III. RESULTS AND DISCUSSION

A. Effect of volume fraction of fluid and matrix

The long-time self-diffusion coefficientD of the fluid par-
ticles has a strong dependence on the concentration of the
fluid and of the disordered matrix. Figure 1(a) depictsD as a
function of the volume fractionf f of fluid particles[defined
asf f ;pNs f f

3 / s6L3d], for various volume fractionsfm of the
disordered matrix and fors f f =smm. For all values offm
investigated,D decreases monotonically asf f is increased.
For a given value offm, the decrease ofD with f f is roughly
power law (linear on a logarithmic scale) for low f f and
stronger than power law for highf f. For any value off f the
presence of disordered matrix slows down the translational
motion of fluid molecules in a monotonic fashion. This is
shown in Fig. 1(b), where the particle diffusion relative to
that without the disordered matrix is plotted againstfm (note
that the ordinate is plotted on a logarithmic scale). Dsfm

=0d is the diffusion of the fluid at the same value off f but
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with fm=0. The dependence ofD on fm is similar for all
values off f, except at the lowest volume fractionf f =0.05.
The reason for the distinctive behavior forf f =0.05 is mainly
due to the strong concentration dependence of the fluid dif-
fusion at low fluid volume fraction. For low fluid volume
fractions, the diffusion constant is inversely proportional to
its volume fraction(e.g., in Enskog theory which will be
discussed below) but at higher fluid volume fractions, the
dependence is much weaker. Therefore, the effect of the ma-
trix volume fraction on the fluid diffusion is greater at low
fluid volume fractions such asf f =0.05 than at higher fluid
volume fractions.

It is appealing to think of a fluid in a disordered matrix as
a mixture of two components, where one of them is
quenched in space. For the static properties, considerable
progress has been made in the development of integral equa-
tions for these quenched annealed systems[35–50]. From a
dynamical standpoint it is interesting to see if these systems
can be mimicked by a binary mixture where one of the com-
ponents is infinitely massive. To this end, we compare the
simulation results to the Enskog theory for hard sphere mix-
tures at finite volume fractions[51]. Note that our fluid-
matrix system does not satisfy the basic assumption of the
theory since the fluid particles and the disordered matrix are
not in thermal equilibrium. However, the theory might serve

as a starting point for more sophisticated theories. According
to the theory, the self-diffusionDm of speciesm is given by

Dm =
kBT

jm
0s0d

, s10d

with

jm
0s0d =

16p

3
SkBT

2p
D1/2

o
n
S mmmn

mm + mn
D1/2

rnsmn
2 gmnssmnd,

s11d

wheremn and rn are the mass and the number density, re-
spectively, of speciesn, smn is the hard sphere interaction
diameter between speciesm andn, andgmnssmnd is the pair,
distribution function at contact between speciesm andn. In
the mm→` limit, Eq. s11d takes the form

j f
0s0d = 32SkBTmf

2ps f f
2 D1/2F 1

Î2
f fgf fss f fd + Ss fm

s f f
D2

fmgfmss fmdG .

s12d

The theory requires the contact value of the pair correlation
functions, which is obtained from the simulations.

The theoretical predictions for the self-diffusion coeffi-
cient of the fluid particles are plotted in Fig. 1(a). In the
absence of the matrix, the theory is in quantitative agreement
with simulations, as has been noted previously[34]. For low
matrix volume fractions, i.e.,fm=0.05, the theory is still in
reasonably good agreement with the simulation results, al-
though it tends to overestimateD. The reason why the En-
skog theory works well even in this regime is that the corre-
lations between matrix particles are not very strong. As a
consequence, the mobility of fluid particles is affected
mainly by individual immobile obstacles rather than by their
collective correlations, such as geometric constraints.

As the matrix volume fraction is increased further, how-
ever, the theory significantly overestimates the value ofD,
with an order of magnitude difference forfm=0.20. This
discrepancy between the Enskog theory and the simulation
results at high matrix volume fractions is not surprising, be-
cause at high matrix volume fractions the configurations of
the fluid and disordered matrix are very different from those
of the equilibrium mixtures, which is the basic assumption in
the Enskog theory.

The presence of many immobile obstacles hinders the dy-
namics of fluids not only due to the excluded volume inter-
action of each obstacle but also due to the geometric con-
straints induced by clusters of obstacles. This geometric
effect is depicted in Fig. 2, which shows a snapshot of the
disordered matrix disks(black solid circles) in two dimen-
sions(2D), where the circle around a matrix disk represents
the excluded area of each disk(assuming fluid particles have
the same size as matrix) and the shaded area indicates an
additional excluded area due to the geometric constraints
caused by the surrounding matrix. Note that the excluded
volume effect induced by geometric constraints is not present
in fluid systems without static matrix. This additional ex-

FIG. 1. (a) The long-time diffusion coefficientD of monoatomic
fluid particles plotted as a function of the volume fraction of par-
ticles sf fd for different volume fractions of disordered matrixsfmd.
Results from the Enskog theory are also shown for comparison.(b)
D /Dsfm=0d plotted as a function offm, whereDsfm=0d is the
diffusion coefficient of particles at the same value off f, at fm=0.
Error bars from the simulations are smaller than the size of markers.
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cluded volume effect becomes significant at high matrix vol-
ume fractions, thus further slowing down the translation dif-
fusion of the fluid particles.

The presence of static disordered matrix therefore has a
greater effect on the translational motion of fluid particles
than the presence of fluid particles themselves, i.e., at a fixed
total volume fractionsftot=f f +fmd, D decreases strongly as
fm increases. For example,Dsf f =0.05,fm=0.20d is lower
thanDsf f =0.25,fm=0d by an order of magnitude. This dy-
namic variation depending on the matrix and fluid volume
fractions is not observed in the static correlations of the fluid
and the disordered matrix. Figure 3 depicts the fluid-fluid
sgf fd and fluid-matrix sgfmd pair correlations functions for
various combinations off f and fm, with ftot=0.25. Al-
though the first peak is slightly lower for higher values of
fm, there is no significant difference ingf fss f fd, which is the
input for the Enskog theory. The fluid-matrix pair-
distribution functiongfm, shown in Fig. 3(b), displays similar
behavior except that the first peak becomes slightly higher as
fm is increased. As a consequence, the Enskog theory or any
theory based on just static correlations between species can-
not describe the effect of static disordered matrix correctly.

In one and two dimensions the translational motion of a
particle shows subdiffusive behavior on length scales smaller
than the correlation length of the fractal, and recovers diffu-
sive behavior at longer times[2]. At the so-called percolation
threshold, the correlation length becomes infinite, and the
motion of the particles is subdiffusive at all times. However,
it is not clear whether this relation between subdiffusion and
the percolation threshold is valid in three dimensions. In fact,
we see no indication of subdiffusion at or over the percola-
tion threshold, the volume fraction of which is<0.04 in
three dimensions[36,52,53]. (In previous simulations[52],
the percolation threshold for extended hard sphere systems,
where two particles are assumed to be connected if their
centers are within a distanced of each other, was reported to
be rmd3<0.65 for d=2smm. Therefore, the percolation
thresholdfm in volume fraction for our system is equal to
sp /6drmsmm

3 =sp /48drmd3=0.04.) We do, however, observe
that the crossover time when fluid particles begin to show

diffusive behavior from subdiffusive behavior becomes
longer as the matrix volume fraction is increased. Figure 4(a)
depicts the mean-square displacementWstd of fluid particles
as a function of timet on a logarithmic scale forf f =0.05
and various values offm. Note thatWstd is divided by 6 so
that its slope on a logarithmic plot is equal to the correspond-
ing diffusion coefficient in the diffusive limit. The slope of
ln Wstd vs ln t is an indicator of diffusive or subdiffusive
behavior, i.e., the slope is equal to one for diffusive behavior
and is less than one for subdiffusive behavior. In most cases,
we see diffusive behavior at long times. The exception is for
fm=0.25, when the slope fails to reach one within our simu-
lation time. Inspection of trajectories of individual fluid par-
ticles indicates that some of the particles are trapped in a
cage made by clusters of immobile matrix. To verify the
effect of the trapping, we plot the probability distribution of
Wstd of fluid particles whent is 2048tMD for fm=0.20 and
128 000tMD for fm=0.25 in Fig. 4(b). Unlike thefm=0.20
case, where the distribution is bell shaped and peaked near
t=100tMD, the distribution forfm=0.25 shows a strong
peak below 10tMD and is almost flat fort.30tMD. This
strongly indicates that not only are a fraction of fluid par-
ticles at this high matrix fraction trapped in a local region
but, in addition, even the diffusion of free fluid particles is
highly heterogeneous.

There is no clear-cut distinction between trapped and free
particles because the size distribution of traps created by the

FIG. 2. A snapshot of disordered matrix disks(solid black
circles) in 2D. The circle around each matrix disk represents the
area excluded by each matrix(assuming fluid particles have the
same size as matrix) and the shaded area indicates an additional
excluded area due to the geometric constraint induced by the sur-
rounding matrix disks.

FIG. 3. (a) The fluid-fluid pair-distribution functiongf f shown
for various combinations of the fluidsf fd and matrixsfmd volume
fractions with the total volume fraction fixed at 0.25.(b) The fluid-
matrix pair-distribution functiongfm shown for similar conditions as
(a).
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static matrix is expected to be polydisperse, which is mani-
fested as the almost flat distribution ofWstd for fm=0.25.
However, since it appears that the first three points in the
distribution in Fig. 4(b) deviate from the other points, we
exclude particle trajectories whoseWstd is below 30tMD, and
plot the mean-square displacement from the remaining par-
ticles as a dashed line in Fig. 4(a). Although the modified
mean-square displacement is twice as large as the original
one for the whole time range, its curvature remains the same,
i.e., the subdiffusive behavior is persistent within the inves-
tigated simulation time scale even without trapped trajecto-
ries. The persistent subdiffusive behavior can be attributed to
the heterogeneity of the particle diffusion as shown in Fig.
4(b). Because of this heterogeneous nature, the particle mo-
tion cannot be described using a single-diffusion coefficient.

B. Effect of particle size

The fluid dynamics are expected to be strongly dependent
on the ratio of the diameters of fluid and matrix spheres.
Figure 5 shows the diffusion coefficient of spherical particles
in the disordered matrix normalized by the diffusion coeffi-
cient of particles of the same size in the absence of the ma-

trix, D /Dsfm=0d, as a function off f for different values of
s f f, for a fixed value ofsmm=1.0. The total volume fraction,
ftot=f f +fm=0.20 for all cases, andfm therefore decreases
asf f increases. Interestingly, the diffusion coefficient shows
a qualitatively different trend depending on the size ratio.
When s f f is greater than or equal tosmm, D /Dsfm=0d in-
creases asf f increases. However, whens f f =0.5, the trend is
reversed and the diffusion gets faster asf f decreases or more
fluid particles turn into immobile matrix. Although it appears
strange at first glance, this behavior can be explained quali-
tatively using the concept of free volume[54]. Whens f f is
greater thansmm, replacing a fluid particle with several fixed
matrix of a smaller size increases the volume excluded to the
particles and this slows down the translational motion of the
fluid particles. On the other hand, whens f f is smaller than
smm, the diffusion of the fluid particles becomes faster when
several small particles are replaced by a single immobile
particle with a bigger size, thereby decreasing the volume
excluded to the diffusing particles.

C. Effect of matrix structure

Initial configurations of the fluid particles and the immo-
bile matrix are generated in simulations by initially equili-
brating randomly generated matrix and then inserting fluid
particles in the equilibrated matrix(method EQU). The ma-
trix can be also generated in many other ways and it is of
interest to examine the effect of matrix preparation on the
dynamics of the particles. One way of generating initial con-
figurations is via random sequential adsorption[41] (method
RSA) of the disordered matrix, where the matrix is randomly
generated(but not equilibrated as in method EQU), and the
fluid particles are then inserted. Another way is to generate
and equilibrateN+Nm particles, and then randomly selectNm
out of N+Nm particles as the disordered matrix(method
MIX ). These three methods give different probability distri-
butions for the disordered matrix. For example, the probabil-

FIG. 4. (a) The mean-square displacementWstd of the fluid par-
ticles as a function of time atf f =0.05 and various values offm on
a logarithmic scale. Note thatWstd is divided by 6 so that the slope
is equal to the corresponding diffusion coefficient in the diffusion
limit. (b) The probability distribution ofWstd at t=2048tMD for
fm=0.20 andt=128 000tMD for fm=0.25. The dashed line in(a) is
the mean-square displacement of fluid particles, whoseWstd is
greater than 30tMD.

FIG. 5. The diffusion coefficient of spherical particles in the
disordered matrix normalized by the diffusion coefficient of par-
ticles of the same size without matrix,D /Dsfm=0d, plotted as a
function of the particle volume fractionf f for different values of
the particle-particle exclusion diameters f f at a fixed value of the
particle-matrix exclusion,smm=1.0. The total volume fraction,
ftot=f f +fm, is also fixed at 0.20 for all cases.
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ity distributions for method EQU and method MIX are, respectively, given by

PEQUsr 1, . . . ,r Nm
d =

exp f− bUsr 1, . . . ,r Nm
dg

ZNm

s13d

and

PMIXsr 1, . . . ,r Nm
d =
E ¯E exp f− bUsr 1, . . . ,r Nm

,r Nm+1, . . . ,r Nm+Ndgdr Nm+1¯ dr Nm+N

ZNm+N
, s14d

whereUsr 1, . . . ,r Nm+Nd is the potential energy of a configu-
ration of Nm+N particles, andZNm+N is the configuration in-
tegral. The probability distribution for method RSA is also
different from the above twof41g.

This difference in the matrix structure has only a slight
effect on the pair correlation function of the fluid but a sig-
nificant effect on the dynamic properties. The particle-
particle pair correlation functiongf fsrd of spherical fluid par-
ticles at f f =0.10 and fm=0.20 is shown for the three
methods in Fig. 6(a). Note thatgf fsrd of method MIX exactly
matches the pair correlation function of particles atf f
=0.30 without matrix. There is a noticeable discrepancy be-
tween the different methods at short distances, but overall the
three methods have similar results for the pair correlation
functions. The matrix structure has a greater effect on the
dynamics of particles. Figure 6(b) depicts the diffusion coef-
ficient of fluid particles in the three different matrix struc-
tures as a function off f, for two values offm. At fm=0.1,
there is little difference among three methods, althoughD of
method MIX is slightly higher than the other two methods.
However, at a higher value offm, D is clearly different by as
much as an order of magnitude, for the three different matrix
structures. The fact that the disordered matrix is not fully
characterized by its volume fraction was also pointed out by
Arns et al. [55].

D. Analysis of trajectories with the single-chain structure
factor

The trajectory of each particle maps out a path in space
and this path may be visualized as the conformation of a
single-polymer molecule. The average shape of these trajec-
tories can then be analyzed using the methods of polymer
statistics. Since a particle at any given time does not interact
with itself (or another particle) at another time, these trajec-
tories are analogous to an ensemble of noninteracting “ideal”
polymers in a sea of obstacles, with the position of the par-
ticle at a timeti = iDt corresponding to the position of theith
monomer in the polymer chain. We analyze particle trajecto-
ries using this analogy, by setting the degree of polymeriza-
tion (or the number of particle positions in a trajectory) to
256, and varying the time stepDt to study the fluid behavior
on various time scales. The average shape of the polymer
chain contains information regarding the dynamics of the
particles.

Single-chain conformational properties are often analyzed
in terms of the single-chain structure factorvskd defined by

vskd =
1

Nm
o
i,j

Nm K sinskrijd
krij

L , s15d

wherek is the reciprocal wave vector,Nm is the degree of
polymerization,r ij is the distance between theith and j th
monomers in a single chain, andkAl is the ensemble average
over all chain conformations. The single-chain structure fac-
tor displays characteristic behavior on various length scales.

FIG. 6. (a) The particle-particle pair correlation functiongf fsrd
at f f =0.1 andfm=0.2 for three different matrix structures. The
solid line also showsgf fsrd at f f =0.3 without matrix for compari-
son.(b) The diffusion coefficientD plotted as a function off f for
fm=0.1 and 0.2.
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For low wave vectorsskRg!1, whereRg is the radius of
gyration of the polymerd k2v̂skd,Nmk2s1−k2Rg

2/3+¯d and
for high wave vectorsv̂skd,1. In the intermediate scaling
regime, the single-chain structure factor provides informa-
tion regarding the shape of the chain. Consider a sphere of
radius r around a central bead so thatm beads are present
inside the sphere. Ifr2,m2n thenvsrd,m/ r3 implies vsrd
, r1/n−3. Taking the Fourier transform and using the scaling
trick, one obtainsv̂skd,k−1/n over the range of length scales
of the order of the size of the chain. For an ideal chain,n
=1/2, andk2v̂skd,1 in the scaling regime. It is therefore
customary to plotk2v̂skd versusk on what is called a Kratky
plot.

An important difference between a diffusing particle and a
polymer chain is that in the former case the location of each
monomer is arbitrary, while in the latter it arises from chemi-
cal interactions. The unit of wave vectork for a given time
step isssDtd−1, wheresDt is the average displacement of each
fluid particle during intervalDt. The value of sDt was
0.148s f f, 0.613s f f, 1.34s f f, and 3.19s f f for Dt=0.1, 1, 10,
and 100, respectively. We use a reduced variableksDt instead
of k in analyzing the trajectories. We average over all trajec-
tories of all particles for a given state point.

Fluid particles without disordered matrix show diffusive
behavior at all time scales except at very short-time scales,
when the ballistic motion is observed. A Kratky plot there-
fore shows linearly increasing behavior for shortDt and a
plateau behavior for large enoughDt. vskd in a disordered
matrix is very different from that in neat fluids, with quali-
tatively different behavior on different time scales. Figure 7
depictssksDtd2vskd as a function ofksDt for four different
values of Dt, and for f f =0.1 and fm=0.2. For Dt=0.1,
sksDtd2vskd shows a negative slope in the range ofksDt=1
−4, which suggests that particle motion in the presence of
immobile disordered matrix is localized at a local region at
this short-time scale, i.e., the polymer chain is collapsed
sn,0.5d. As the time step is increased toDt=1, the negative
slope disappears but a plateau region is seen aroundksDt
=4−10 in sksDtd2vskd, indicating that particles diffuse nor-

mally on this time scale. Interestingly, when the time step is
further increasedsDt=10d, the particle motion deviates from
the normal diffusion, showing a monotonic increase in
sksDtd2vskd with ksDt. This superdiffusive behavior might be
the signature of the particle hopping process, where particles
hop from one vacant site to another occasionally while they
stay at local sites most of the time. Although the process
gives the same mean-square displacement as normal diffu-
sion [56], the trajectories are different, i.e., they are extended
on intermediate time scales, but after sufficiently many hops,
they become diffusive. This normal diffusion at long times is
also seen in our study(see the plateau regime aroundksDt
=1 in Fig. 7 atDt=100).

IV. SUMMARY AND CONCLUSIONS

We report results of discontinuous molecular dynamics
simulations of hard sphere fluids in disordered matrices com-
posed of hard spheres. The effect of fluid and matrix densi-
ties, matrix structure, and particle size on the mean-square
displacement, long-time self-diffusion, and single-chain
structure factor of particle trajectories are presented and ana-
lyzed.

The matrix volume fraction has a stronger effect on fluid
diffusion than the fluid itself, especially at high matrix vol-
ume factions. We attribute this to the geometric constraints
produced by disordered matrix which results in strong hin-
drance of fluid diffusion. Replacing fluid particles with an
equal number of matrix particles with the same size de-
creases the diffusion of fluids. This trend can be reversed if
the matrix particles are larger than that of fluid particles,
however, even when the total volume fraction is fixed. The
way the matrix structure is prepared has also great impact on
the fluid diffusion, especially at high matrix volume frac-
tions. Although the static correlations between fluid and ma-
trix particles are similar for the different preparation meth-
ods, the diffusion coefficient can be different by an order of
magnitude. Therefore, the dynamic behavior of fluids cannot
be described using only static information. Simple exten-
sions of theories for mixtures to this system by setting the
mass of the matrix spheres to infinity therefore fail. We also
anticipate that mode-coupling theories, which rely only on
static input regarding the system, will also fail.

The single-chain structure factorvskd, which is popularly
used in polymer community, can be used to analyze the fluid
behavior at different time scales. Unlike neat fluids(fluids
without disordered matrix), fluids in disordered matrix show
different behavior ofvskd, depending on the time scale stud-
ied. At very short-time scales, there is a negative slope in
k2vskd suggesting the trajectories are localized. On longer
time scales, particle trajectories are more extended than a
random walk and normal diffusion is recovered on very
long-time scales. This change in particle diffusive behavior
might be the signature of the hopping process.

We conclude that the dynamics of simple hard sphere liq-
uids in quenched random matrix is very interesting. The ef-
fect of fluid-fluid and fluid-matrix interactions, and the struc-

FIG. 7. Single-chain structure factorvskd multiplied by sksDtd2

is plotted as a function of wave vectorksDt at sf f ,fmd
=s0.10,0.20d. The average displacementsDt is 0.148s f f, 0.613s f f,
1.34s f f, and 3.19s f f for Dt=0.1, 1, 10, and 100, respectively.
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ture and dynamics of the matrix itself are natural extensions
of this work. In addition the rotational dynamics of molecu-
lar liquids could shed considerable light into the dynamics of
liquids in glassy materials, and possible to carry out with
simple extensions of our algorithm. Work along these lines is
currently in progress.
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