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Diffusion of hard sphere fluids in disordered media: A molecular dynamics simulation study
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Molecular dynamic simulations are reported for the static and dynamic properties of hard sphere fluids in
matrices (or medig composed of quenched hard spheres. The effect of fluid and matrix density, matrix
structure, and fluid to matrix sphere size ratio on the static and dynamic properties is studied using discon-
tinuous molecular dynamics. The matrix density has a stronger effect on the self-diffusion coefficient than the
fluid density, especially at high matrix densities where the geometric constraints due to the quenched spheres
are significant. When the ratio of the size of the fluid spheres to that of the matrix spheres is equal to or greater
than one, the diffusion increases as the fluid density is increased, at constant total volume fraction. This trend
is however reversed if the ratio is smaller than one. Different methods of generating the matrix have a very
strong effect on the dynamic properties even though the static correlations are similar. An analysis of the
single-chain structure factor of the particle trajectories shows a change in the particle diffusive behavior at
different time scales, suggestive of a hopping mechanism, although normal diffusion is recovered at long times.
At high matrix densities, there is considerable heterogeneity in the diffusion of the fluid particles. The simu-
lations demonstrate that the correlations in the matrix play a significant role on the diffusion of fluid spheres.
For example, the diffusion constant in matrices constructed by different methods can be an order of magnitude
different even though the pair correlation functions are almost identical.
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I. INTRODUCTION (called a percolation clusteis fractal over short distances
and homogeneous at large distances. In this case, since the

The behavior of fluids in complex environments is of sig- diffusion is self-similar at all length and time scales for a
nificance in numerous situations ranging from analyticalfractal system, the diffusion is anomalous at short distances
separations and industry to the fundamentals of transport iand normal at larger distances. The characteristic distance
living cells and heterogeneous materials. For example, ifitime) scale where the diffusion changes from anomalous
analytical separations one is interested in separating speciégbdiffusion to regular diffusion is called the crossover
that are very similar in their physical properties by takinglength (time). As the obstacle concentration increases, the
advantage of small differences in their adsorption and transcrossover length increases, and at the percolation threshold
port through a matrix, such as a gel or polymer solution. Aconcentration of the obstacles, the crossover letttthe)
molecular understanding of the effect of the matrix structurefiverges and the diffusion is anomalous over all distances
and interaction of the matrix with solutes on the adsorptioriMe9-

and transport can go a long way in establishing the relative There are many experlmental StUd.'eS of the diffusion .Of
importance of structural and interaction effects on the adP€Netrants in disordered matrices, which support the qualita-

. . . ; ive picture described above. The long-time translational
sorption and dynamics of solutes. Despite the importance 0ielf—dif‘fusion coefficient of spherical silica particles in po-

these systems, there has been very little theoretical or CoMs s glasse§4] and random sphere packinfs] with vary-
putational research on the dynamics of fluids in static matrixing pore size and ionic strengf6] has been studied using

In this paper we report molecular dynamics simulation re-yynamic light scattering and fluorescence recovery after pho-
sults for the static and dynamic properties of hard sphergpieaching. The long-time tracer diffusion coefficient is
fluids in matrices(or medig composed of quenched hard foynd to be uniquely dependent on the ratio of the tracer size
spheres. to the packing sphere siz& and vanishes wheg is larger
There is a large body of work on the behavior of randomthan ~0.15 for random close packini@], since the tracer
walks in matrices composed of fixed obstacles. For a randorgannot escape from the interstitial holes. The anomalous sub-
walk in a Euclidean space, the mean-square displacemegfffusive regime becomes dominant as the percolation
(MSD) is a linear function of time and the diffusion is re- threshold is approached. Nuclear-magnetic-resonance mi-
ferred to as normal or regular. In disordered systems, howcroscopy studies of diffusion on quasi-two-dimensional
ever, the diffusion can be anomalous, i.e., the M&D can  random-site percolation clustef, close to the percolation
vary sublinearly with time agr?)~t*% with d,,>2. The  threshold, suggest that normal diffusion limit is reached only
constantd,, is called the anomalous subdiffusion exponent,at very long times. Anomalous subdiffusive behavior has
and normal diffusion is recovered fai,=2. Percolation also been observed for a variety of lipids and proteins in the
theory has been used to describe diffusion in porous systenmdasma membrane of cells, using single-particle tracking
[1-3] modeled as a collection of static obstacles. In the abmeasurementf8,9] and fluorescence photobleaching recov-
sence of obstacles, the diffusion is normal. For a low conery [10,11. Anomalous subdiffusion has a major effect on
centration of the obstacles, the cluster of unobstructed sitethe mobility, and hence the kinetics of diffusion mediated
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systems. Many factors such as obstruction, binding, hydroexisting theories for the diffusion of liquid mixtures is not in

dynamic interactions, etc., are believed to contribute to thgjood agreement with simulations.

effects of membrane heterogeneities in lateral diffusion. The rest of the paper is organized as follows. The molecu-
The long-time diffusion of solutes in disordered matrices|ar model and simulation methods are presented in Sec. Il.

can be studied using field theoretic formulations. For eX-The results are presented in Sec. lll, and a summary and
ample, Chakrabortﬁt al. [12] have presented a theory that some conclusions are presented in Sec. |V.

describes the diffusion of ions in charged disordered matrices
using a path integral representation for the propagator
coupled with a field theory for the matrix. Using a variational Il. SIMULATION DETAILS
method, they calculated the diffusion coefficient for the case
of Gaussian spatial density fluctuations in the disorder. From The simulation cell is a cube with periodic boundary con-
numerical solution of their equations and asymptotic analysiglitions in all directions. The fluid particles are modeled as
they demonstrated a crossover from diffusive to subdiffusivéhard spheres of diametet;, and the matrix is composed of
behavior as the strengtti.e., density of the disorder was fixed hard spheres of diametey,,, Fluid spheres and matrix
increased, and suggested that the mechanism for ion moti@pheres also interact via a hard sphere potential, with diam-
change from diffusion to hopping for high strengths of theeter o= (ot +0omm /2. The box lengthL is chosen to be
disorder[13]. This physical picture is consistent with other |arge enough for fluid particles to show the normal diffusive
theories[14]. More recently, Witkoskie, Yang, and C@b5]  pehavior and contain enough fluid and matrix particles for
have investigated several approaches for Brownian motion igood statisticsL=11.026r,,,in most cases and 13.882,
dynamically disordered matrices. They investigated the befor high densities of the quenched spheres. The number of
havior of a diffusing particle using perturbation theory, andmatrix spheresi,, ranges from 128 to 1280 and the number
various treatments on the Martin-Siggia-RogES] func-  of fluid spheresN, ranges from 128 to 1024. The box length
tional. . . is adjusted to achieve the desired density. We also checked
Despite the practical and theoretical importance of thesgor finite size effects for some systems by performing simu-

systems, there have been few computer simulation studies @tions with simulation cells of different lengths and found
the dynamics of fluids in quenched matrices, and little isno significant differences.

known about the behavior of standard models. In fact, all the The simulation temperatur‘é is defined by the equiparti_

simulation studies we are aware of have focussed on a singifon theorem, which relates the temperature to the system

solute in static matrices. Penetrant diffusion in glassy amorkinetic energy by

phous polymers has been studied using molecular dynamics

[17,18 (MD) and Monte Carld19] (MC) simulations. The 3 1 N

results indicate a hopping mechanism for the penetrants: the =Nk T==, mivi?, (1)

penetrants dwell in the voids of the polymer matrix for con- 2 2ia

siderable time and perform fast jumps between neighboring

voids. Normal diffusion is reached at long times, but overwherekg is Boltzmann’s constant ana is the mass of the

intermediate time scales an anomalous subdiffusive regimtuid particles. The particle kinetic enerdggT affects only

exists. Diffusion of ionic particles in charged disordered ma-the velocity distribution of fluid particles and is set to unity

trices indicates that the charge centers create deep traps thiatthis study. In addition, the matrix hard sphere diameter

capture the mobile particles. However, at long times the moommand the masey of fluid particles are the units of length

bile particles escape the traps and their motion between trag$id _mass, respectively, and the unit of time gp

is diffusive [20]. MC simulations of diffusion in zeolites = \s"mfaﬁm/kBT. These constants are set to unity in the re-

modeled as a network of well-defined sites also suggest sults reported.

hopping mechanism for the diffusing moleculgzl-24. Starting with an initial configuration, the creation of

Diffusion in porous random matrices has been studied usinghich is discussed shortly, the system is evolved using the

Brownian dynamics simulatiori25,26 and MC simulations ~ discontinuous molecular dynamic§DMD) simulation

in two [11,27-29 and three dimensiong30,3]. Although  method[32-34. In this method, the system is evolved via

these simulation studies provide useful insight into the effecsuccessive collisions. First, the time to the next collision is

of disordered matrices on the fluid diffusion at infinitely di- calculated and all the fluid atoms are translated forward until

lute concentration, the study of a single tracer particle igthe collision occurs. Next, the postcollision velocities of the

nores the interaction between fluid particles themselves;olliding pair are determined from the dynamics of an elastic

which plays a significant role even in simple fluids. collision. Finally, the properties of interest are calculated be-
In this paper we present molecular dynamics simulatiorfore returning to the first step. Since the time evolution is

results for the diffusion of hard spheres in a matrix of fixedexact up to the machine precision, DMD is stable over long

hard spheres. The choice of model allows us to focus omimes. We use various optimization methods such as linked

excluded volume effects on the dynamics, and use a verlsts and neighbor lists. With these optimization algorithms,

efficient discontinuous molecular dynamics algorithm tothe computation time scales linearly with the number of par-

evolve the system. We quantify the effect of matrix and fluidticles in the systen{i33,34.

density, the ratio of the size of the fluid spheres to that of the The simulation algorithm is similar to that of hard sphere

matrix spheres, and the method of preparation of the matrifuids. The collision timet; betweenith andjth particles is

on the dynamics of the hard sphere fluid. Naive extension ofjiven by
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|rij(t+tij)|:|rij +Vijtij|:o'ij' (2) Monte Carlo simulations, and might sample configuration

space not accessible to usual diffusion experiments such as
wherer;;=r;—rj, v;;=V;=Vj, I; is the position of spherg vi  exclusion chromatography. There is therefore the possibility
is the velocity of spherg andoy; is the hard-sphere diameter that the configuration might not be ergodic if, for example, a

between the two species. The resultijgs sphere is trapped in a region of matrix that is disconnected
from other regions. We find that this occurs when the matrix
- b; bﬁ - vﬁ(rﬁ - oﬁ) volume fraction, ¢m[§ wNmaﬁqm/(6I73).]., is approximately
tj = ) 3 greater than-0.20. This method of initial-configuration gen-
2 eration does mimic other experimental situations such as

vi vesicle trafficking in living cells. The initial configurations
with by =r;;-v;;. Note thatb;; will be less than zero if the are equilibrated using DMD until all fluid particles have
particles are going to collide. Post-collision velocities aremoved roughly half the box length.

determined from conservation of kinetic energy and linear Properties are averaged over several trajectories for each

momentum, i.e., realization of the disordered matrices, and then over several
matrix configurations. Starting from the resulting equili-

yhew=, _ 2m; (F i -vi)f (4) brated configurations, 1000 trajectories_ are st_ored at time in-
! Compem tervals Atsymple Chosen so that the fluid particles translate

less than the distande/ Ng on average, wherd,=256 is the
bin size. Static properties such as pair-distribution functions

new zm =~ =~ . . . .
V=Vt Tm(rij Vipfij, (5) are calculated using the 1000 trajectories. Dynamic proper-
my+ ties such as mean-square displacements are also obtained as
where v'®" is the postcollision velocity of spherg f; @ function of time, with a maximum time 3iAtsampie The
=r;;/r;; is the unit vector of ;, andm is the mass of particle long-time self-diffusion coefflmeer of fluid particles is cal-
i. For collisions between fluid particles, whemg=m, culated from the mean-square displacenW/ty of each par-
ticle using the Einstein relation, i.e.,
b::
vi=vi = —Lry, (6) W(t ri(t+to) = ri(to) |2
i A b im0 _ (it —ritl
t—o0 6t t—o 6t

new._ by wherer; is the position of fluid particlé andt, is an arbi-
Vit 2T ) trary initial time. Only data points fronfNg/2)Atsample tO

f NsAtsampie@re used in calculatin®. The static and dynamic
For collisions between fluid particles and matrix particles,properties obtained by the above procedure are only statisti-
we assume that the mass of the matrix particle is infinite, andal averages of a particular realization of the disordered ma-

\Y

in this case, trices. To obtain matrix-averaged properties, the same proce-
dure is repeated for 8-3@ifferent realizations of the
VW=, — z_biirij_ (8) matripes, _depending on the matrix volume fraction_. Error
afm bars in this paper correspond to one standard deviation of

. . . . - the latter average.
The simulation starts with the generation of an initial con- 9

figuration. Several methods for the generation of the random

matrix are considered. In the major part of this study, the lll. RESULTS AND DISCUSSION
disordered matrix is generated by randomly inserting hard
spheres into an empty simulation box and equilibrating this
system using DMD. The resulting configuration is quenched The long-time self-diffusion coefficieri of the fluid par-

(or fixed) and this serves as the disordered matrix for theticles has a strong dependence on the concentration of the
incoming fluid molecules. The fluid molecules are then in-fluid and of the disordered matrix. Figuréal depictsD as a
serted into the matrix. A random location in the simulationfunction of the volume fractiomb; of fluid particles[defined

cell is chosen, an attempt is made to insert a fluid sphere, arh ¢¢=7mNo;/ (6L%)], for various volume fractiong, of the

the insertion is accepted if there is no overlap between thdisordered matrix and fooy=o0y,,, For all values ofe,,
sphere and othe(fluid and matriy spheres. This process investigatedD decreases monotonically &s is increased.
fails at high volume fractions where most random insertiong=or a given value oy, the decrease @ with ¢ is roughly

are unsuccessful. Therefore, at high volume fractions we enpower law (linear on a logarithmic scajefor low ¢ and

ploy the particle growth methofB3,34, in which the fluid stronger than power law for higl;. For any value of; the
molecules are randomly inserted, but with a smaller diametepresence of disordered matrix slows down the translational
than desired. The diameter of each fluid sphere is growmotion of fluid molecules in a monotonic fashion. This is
randomly along with standard Monte Carlo translationshown in Fig. 1b), where the particle diffusion relative to
moves until the desired particle size is achieved. The initialthat without the disordered matrix is plotted agaiggt(note
configuration generation method used is similar to the parthat the ordinate is plotted on a logarithmic sgaB (¢,

ticle insertion and deletion moves used in grand canonicat0) is the diffusion of the fluid at the same value @f but

A. Effect of volume fraction of fluid and matrix
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] as a starting point for more sophisticated theories. According
13 to the theory, the self-diffusiod,, of speciesu is given by
] keT
R D, =205 (10
a § ~~~~ *e._ |--®-¢,=000 “( )
e, *|--@-- 9, = 0.05 .
0.01 o .. ---A-- §,=0.10 with
3 T -eQees ¢ = 0.18 , ,
7 == K= ¢, = 0.20 167 [ kgT\ Y2 m,m, \*?
Enskog theory g;OL(O) = _<_> E — pVO.,U«VgMV(O-MV)’
TR TR E d ks 3wl SoAmeem,
A
(11)
&
1 wherem, and p, are the mass and the number density, re-
() spectively, of species, o, is the hard sphere interaction
diameter between specigsand v, andg,,(o,,) is the pair,
- distribution function at contact between speciesndv. In
C“’E the m,,— o limit, Eq. (11) takes the form
< 0.1
£ 3|—— ¢,=0.05
a 63 t keTme \Y2[ 1 oo\ 2
A o] |- ¢=0.10 §0)= 32( 25 > ) = &iGsi(0s) + ) Gm( i) |-
1|2 ¢=0.15 mog /) LN2 otf
-¥-- ¢, = 0.20 (12)
0.014

' ! ! ' ! The theory requires the contact value of the pair correlation
000 0.05 0.0 015 0.20 functions, which is obtained from the simulations.
O The theoretical predictions for the self-diffusion coeffi-
cient of the fluid particles are plotted in Fig(al In the

FIG. 1. (&) The long-time diffusion coefficieri of monoatomic absence of the matrix, the theory is in quantitative agreement

fluid particles plotted as a function of the volume fraction of par- . . . .
ticles (¢y) for different volume fractions of disordered matfi,,). with simulations, as has been noted previoys#). For low

Results from the Enskog theory are also shown for compar{&yn. matrix vgllume fzjactlons, "e'qtﬁm:.toﬁoti’ th(.:" thlect)_ry 1S Smlltm |
D/D(¢,y=0) plotted as a function ofp,,, whereD(¢,=0) is the reasonably good agreement wi € simufation resuts, ai-
diffusion coefficient of particles at the same valuedaf at ¢,,=0. though it tends to overestimate. The reason why the En-

Error bars from the simulations are smaller than the size of markersk0d theory works well even in this regime is that the corre-
lations between matrix particles are not very strong. As a

with ¢,,=0. The dependence @ on ¢, is similar for all  consequence, the mobility of fluid particles is affected
values of¢y, except at the lowest volume fractiaf}=0.05.  mainly by individual immobile obstacles rather than by their
The reason for the distinctive behavior f¢y=0.05 is mainly ~ collective correlations, such as geometric constraints.
due to the strong concentration dependence of the fluid dif- As the matrix volume fraction is increased further, how-
fusion at low fluid volume fraction. For low fluid volume ever, the theory significantly overestimates the valudopf
fractions, the diffusion constant is inversely proportional towith an order of magnitude difference fap,=0.20. This
its volume fraction(e.g., in Enskog theory which will be discrepancy between the Enskog theory and the simulation
discussed belowbut at higher fluid volume fractions, the results at high matrix volume fractions is not surprising, be-
dependence is much weaker. Therefore, the effect of the m&ause at high matrix volume fractions the configurations of
trix volume fraction on the fluid diffusion is greater at low the fluid and disordered matrix are very different from those
fluid volume fractions such ag;=0.05 than at higher fluid of the equilibrium mixtures, which is the basic assumption in
volume fractions. the Enskog theory.

It is appealing to think of a fluid in a disordered matrix as  The presence of many immobile obstacles hinders the dy-
a mixture of two components, where one of them isnamics of fluids not only due to the excluded volume inter-
quenched in space. For the static properties, considerabfstion of each obstacle but also due to the geometric con-
progress has been made in the development of integral equstraints induced by clusters of obstacles. This geometric
tions for these quenched annealed systg38s-57J. From a  effect is depicted in Fig. 2, which shows a snapshot of the
dynamical standpoint it is interesting to see if these systemdisordered matrix diskgblack solid circley in two dimen-
can be mimicked by a binary mixture where one of the com-sions(2D), where the circle around a matrix disk represents
ponents is infinitely massive. To this end, we compare théhe excluded area of each di&@ssuming fluid particles have
simulation results to the Enskog theory for hard sphere mixthe same size as matyband the shaded area indicates an
tures at finite volume fraction§51]. Note that our fluid- additional excluded area due to the geometric constraints
matrix system does not satisfy the basic assumption of theaused by the surrounding matrix. Note that the excluded
theory since the fluid particles and the disordered matrix argolume effect induced by geometric constraints is not present
not in thermal equilibrium. However, the theory might servein fluid systems without static matrix. This additional ex-
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. ----- ¢,=0.15, ¢_=0.10
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FIG. 2. A snapshot of disordered matrix disksolid black ©)
circley in 2D. The circle around each matrix disk represents the 2.0
area excluded by each matrigassuming fluid particles have the
same size as matpxand the shaded area indicates an additional ] — ¢,=0.20, ¢,=0.05
excluded area due to the geometric constraint induced by the sur- S 16— % |- ¢,=0.15, ¢,_=0.10
rounding matrix disks. D_)E [ R VR P ¢,=0.10, ¢ =0.15
cluded volume effect becomes significant at high matrix vol- 1.0 - ¢=0.05, ¢,,=0.20
ume fractions, thus further slowing down the translation dif-
fusion of the fluid particles. i

The presence of static disordered matrix therefore has a 0.8 I I T
greater effect on the translational motion of fluid particles 10 15 20 25 3.0

than the presence of fluid particles themselves, i.e., at a fixed
total volume fraction ¢y:= ¢¢ + @), D decreases strongly as
¢m increases. For exampl®(¢:=0.05,4,=0.20 is lower FIG. 3. (a) The fluid-fluid pair-distribution functiorys; shown
thanD(¢;=0.25,4,,=0) by an order of magnitude. This dy- for various combinations of the fluitty;) and matrix(¢,,) volume
namic variation depending on the matrix and fluid volumefractions with the total volume fraction fixed at 0.25) The fluid-
fractions is not observed in the static correlations of the fluidnatrix pair-distribution functioms,,, shown for similar conditions as
and the disordered matrix. Figure 3 depicts the fluid-fluid(a)-
(g¢r) and fluid-matrix (gs,,) pair correlations functions for
various combinations ofp; and ¢, with ¢,=0.25. Al- diffusive behavior from subdiffusive behavior becomes
though the first peak is slightly lower for higher values of longer as the matrix volume fraction is increased. Figue 4
#m there is no significant difference @;(oy), which is the  depicts the mean-square displaceméfit) of fluid particles
input for the Enskog theory. The fluid-matrix pair- as a function of time on a logarithmic scale foep;=0.05
distribution functiong;,, shown in Fig. 80), displays similar ~and various values ob,, Note thatW(t) is divided by 6 so
behavior except that the first peak becomes slightly higher athat its slope on a logarithmic plot is equal to the correspond-
¢ is increased. As a consequence, the Enskog theory or arnigg diffusion coefficient in the diffusive limit. The slope of
theory based on just static correlations between species caimW(t) vs Int is an indicator of diffusive or subdiffusive
not describe the effect of static disordered matrix correctly. behavior, i.e., the slope is equal to one for diffusive behavior
In one and two dimensions the translational motion of aand is less than one for subdiffusive behavior. In most cases,
particle shows subdiffusive behavior on length scales smallewe see diffusive behavior at long times. The exception is for
than the correlation length of the fractal, and recovers diffu-¢,,=0.25, when the slope fails to reach one within our simu-
sive behavior at longer timgg]. At the so-called percolation lation time. Inspection of trajectories of individual fluid par-
threshold, the correlation length becomes infinite, and theicles indicates that some of the particles are trapped in a
motion of the particles is subdiffusive at all times. However,cage made by clusters of immobile matrix. To verify the
it is not clear whether this relation between subdiffusion anceffect of the trapping, we plot the probability distribution of
the percolation threshold is valid in three dimensions. In factW(7) of fluid particles whenr is 2048 for ¢,=0.20 and
we see no indication of subdiffusion at or over the percola-128 000G, for ¢,,=0.25 in Fig. 4b). Unlike the ¢,,=0.20
tion threshold, the volume fraction of which is0.04 in  case, where the distribution is bell shaped and peaked near
three dimension$36,52,53. (In previous simulationg52], 7=100ryp, the distribution for ¢,,=0.25 shows a strong
the percolation threshold for extended hard sphere systemgeak below 16,5, and is almost flat forr>30n,5. This
where two particles are assumed to be connected if theitrongly indicates that not only are a fraction of fluid par-
centers are within a distanckeof each other, was reported to ticles at this high matrix fraction trapped in a local region
be p,d®~0.65 for d=20y,, Therefore, the percolation but, in addition, even the diffusion of free fluid particles is
threshold¢,, in volume fraction for our system is equal to highly heterogeneous.
(716) pmo=(1/48)p,d®=0.04) We do, however, observe There is no clear-cut distinction between trapped and free
that the crossover time when fluid particles begin to showparticles because the size distribution of traps created by the

r/c

051101-5



CHANG, JAGANNATHAN, AND YETHIRAJ PHYSICAL REVIEW E69, 051101(2004)

10
)
g I
E 1 y=0.25 without g o O O =0-5, ;
N = -O-0,/6, =05 ’ K
trapped particles a) ;- 0:'/6,.“,“ 10 ¥
0.1 0.1 |- &0y fom=15 | -
84 |-*-04/0,,=20 | *
6- | —— Enskog theory
S S S B
10° 10° 10* 0.1
t oy
c  0.25- FIG. 5. The diffusion coefficient of spherical particles in the
L -t~ ¢=0.05, ¢, =0.20 disordered matrix normalized by the diffusion coefficient of par-
__S 0.20 — —&— ¢,=0.05, ¢, =0.25 ticles of the same size without matrik/D(¢,,=0), plotted as a
= function of the particle volume fractiog; for different values of
T 0.154 the particle-particle exclusion diametet; at a fixed value of the
;;" 0.10 particle-matrix exclusion,o,,=1.0. The total volume fraction,
g : biot=ds+ by, IS also fixed at 0.20 for all cases.
o}
© 0.05
o L trix, D/D(¢,=0), as a function ofgp; for different values of
0.00 —=== o, for a fixed value ofr,,,=1.0. The total volume fraction,
100 200 300 biot= b+ dy,=0.20 for all cases, ang,, therefore decreases
W(t) as ¢; increases. Interestingly, the diffusion coefficient shows

a qualitatively different trend depending on the size ratio.
FIG. 4. (a) The mean-square displacem&¥it) of the fluid par- ~ When oy is greater than or equal t@,;, D/D(¢,=0) in-
ticles as a function of time ap;=0.05 and various values @f,, on creases ag; increases. However, when;=0.5, the trend is
a Iogarithmic scale. Note thW(t) is divided by 6 so that the slope reversed and the diffusion gets faster@sjecreases or more
is equal to the corresponding diffusion coefficient in the diffusion f|,ig particles turn into immobile matrix. Although it appears
limit. (b) The probability distribution oM7) at 7=2048nyp for  strange at first glance, this behavior can be explained quali-
ém=0.20 andr=128 00Cyp for ¢;,=0.25. The dashed line @) is  tatjvely using the concept of free volunig4]. When oy is
the mean-square displacement of fluid particles, whoke) s greater thans,,, replacing a fluid particle with several fixed
greater than 3fp. matrix of a smaller size increases the volume excluded to the
particles and this slows down the translational motion of the
static matrix is expected to be polydisperse, which is manifluid particles. On the other hand, whe is smaller than
fested as the almost flat distribution Wi(t) for ¢,=0.25. 4, the diffusion of the fluid particles becomes faster when
However, since it appears that the first three points in thgeveral small particles are replaced by a single immobile
distribution in Fig. 4b) deviate from the other points, we particle with a bigger size, thereby decreasing the volume
exclude particle trajectories who®¢7) is below 30ryp, and  excluded to the diffusing particles.
plot the mean-square displacement from the remaining par-
ticles as a dashed line in Fig(ad. Although the modified
mean-square displacement is twice as large as the original C. Effect of matrix structure
one for the whole_nme range, its curvature remains the_ Same, nitial configurations of the fluid particles and the immo-
i.e., the subdiffusive behavior is persistent within the invesyie matrix are generated in simulations by initially equili-
tigated simulation time scale even without trapped trajectobrating randomly generated matrix and then inserting fluid
ries. The persistent subdiffusive behavior can be attributed tBarticIes in the equilibrated matrignethod EQU. The ma-
the heterogeneity qf the particle diffusion as shown .in Fid+trix can be also generated in many other ways and it is of
4(b). Because of this heterogeneous nature, the particle MGgierest to examine the effect of matrix preparation on the
tion cannot be described using a single-diffusion Coemc'entdynamics of the particles. One way of generating initial con-
figurations is via random sequential adsorptidt] (method
RSA) of the disordered matrix, where the matrix is randomly
generatedbut not equilibrated as in method EQUand the
The fluid dynamics are expected to be strongly dependerftuid particles are then inserted. Another way is to generate
on the ratio of the diameters of fluid and matrix spheresand equilibrateN+N,, particles, and then randomly selégt,
Figure 5 shows the diffusion coefficient of spherical particlesout of N+N,, particles as the disordered matrimnethod
in the disordered matrix normalized by the diffusion coeffi- MIX). These three methods give different probability distri-
cient of particles of the same size in the absence of the mautions for the disordered matrix. For example, the probabil-

B. Effect of particle size
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ity distributions for method EQU and method MIX are, respectively, given by

_ o[- pUr - )]

Pequfy, - N ) = 2 (13
N

m

and

J "'JeXp [-BU(ry, ... TN TN+ - erm+N)]der+1"'der+N

Pmix(ry, ... Iy ) = , (14)

Zy,

whereU(rq, ... ,er+,\,) is the potential energy of a configu- Single-chain conformational properties are often analyzed
ration of N, +N particles, andZy_. is the configuration in- in terms of the single-chain structure factotk) defined by
tegral. The probability distribution for method RSA is also

Nm .
different from the above twp41]. (k) = iz sin(kr;j) (15)
This difference in the matrix structure has only a slight Nm; kr; '

effect on the pair correlation function of the fluid but a sig-
nificant effect on the dynamic properties. The particle-wherek is the reciprocal wave vectoN,, is the degree of
particle pair correlation functiogy;(r) of spherical fluid par- polymerization,r;; is the distance between théh and jth
ticles at ¢=0.10 and ¢,,=0.20 is shown for the three monomers in a single chain, afd) is the ensemble average
methods in Fig. @). Note thatg(r) of method MIX exactly — over all chain conformations. The single-chain structure fac-
matches the pair correlation function of particles ¢t  tor displays characteristic behavior on various length scales.
=0.30 without matrix. There is a noticeable discrepancy be-
tween the different methods at short distances, but overall the
three methods have similar results for the pair correlation
functions. The matrix structure has a greater effect on the
dynamics of particles. Figurgl6) depicts the diffusion coef-
ficient of fluid particles in the three different matrix struc-
tures as a function oy, for two values of¢,, At ¢,=0.1,
there is little difference among three methods, althoDgbf
method MIX is slightly higher than the other two methods.
However, at a higher value @f,, D is clearly different by as
much as an order of magnitude, for the three different matrix
structures. The fact that the disordered matrix is not fully T T T T T T T

9¢(r)

characterized by its volume fraction was also pointed out by 1.0 2.0 3.0 4.0
Arns et al. [55]. r/c
D. Analysis of trajectories with the single-chain structure o (b)
factor S
The trajectory of each particle maps out a path in space 014 -8 tan ¢:1 o 0
and this path may be visualized as the conformation of a 6] | == mix
single-polymer molecule. The average shape of these trajec- o

tories can then be analyzed using the methods of polymer
statistics. Since a particle at any given time does not interact
with itself (or another particleat another time, these trajec-
tories are analogous to an ensemble of noninteracting “ideal”
polymers in a sea of obstacles, with the position of the par-
ticle at a timet;=iAt corresponding to the position of tlita
monomer in the polymer chain. We analyze patrticle trajecto-
ries using this analogy, by setting the degree of polymeriza-
tion (or the number of particle positions in a trajectpty FIG. 6. (a) The particle-particle pair correlation functiap(r)
256, and varying the time stejt to study the fluid behavior at ¢:=0.1 and¢,,=0.2 for three different matrix structures. The
on various time scales. The average shape of the polymeblid line also shows(r) at ¢;=0.3 without matrix for compari-
chain contains information regarding the dynamics of theson.(b) The diffusion coefficienD plotted as a function of; for
particles. ¢n=0.1 and 0.2.
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gives the same mean-square displacement as normal diffu-

sion[56], the trajectories are different, i.e., they are extended

T T on intermediate time scales, but after sufficiently many hops,

0.1 1 10 they become diffusive. This normal diffusion at long times is
Kot also seen in our studgsee the plateau regime aroukaty,

=1 in Fig. 7 atAt=100).

3 At=0.1 ] mally on this time scale. Interestingly, when the time step is
1000 - A /f further increasedAt=10), the particle motion deviates from
= J|=--—at=100 R the normal diffusion, showing a monotonic increase in
< 3 (koap)2w(K) with koy,. This superdiffusive behavior might be
Ni 100 E the signature of the particle hopping process, where particles
g 3 hop from one vacant site to another occasionally while they
X b . .
<~ 104 stay at local sites most of the time. Although the process

e

FIG. 7. Single-chain structure factak) multiplied by (kox;)?
is plotted as a function of wave vectoko,, at (¢s,dny)
=(0.10,0.20. The average displacemednj; is 0.148r;, 0.613,

1.340¢¢, and 3.19 for At=0.1, 1, 10, and 100, respectively. IV. SUMMARY AND CONCLUSIONS

We report results of discontinuous molecular dynamics
simulations of hard sphere fluids in disordered matrices com-
For low wave vectors(k%<1, whereRy is the radius of posed of hard spheres. The effect of fluid and matrix densi-
gyration of the polymerk®a(k) ~ Nk?(1-k?RS/3+:--) and ties, matrix structure, and particle size on the mean-square
for high wave vectorso(k)~1. In the intermediate scaling displacement, long-time self-diffusion, and single-chain
regime, the single-chain structure factor provides informastructure factor of particle trajectories are presented and ana-
tion regarding the shape of the chain. Consider a sphere @fzed.
radiusr around a central bead so thatbeads are present  The matrix volume fraction has a stronger effect on fluid
inside the sphere. If*~m? thenw(r)~m/r® implies w(r)  giffusion than the fluid itself, especially at high matrix vol-
~rts, Taking the Fourier transform and using the scalingyme factions. We attribute this to the geometric constraints
trick, one obtainsso(k) ~ k™" over the range of length scales produced by disordered matrix which results in strong hin-
of the order of the size of the chain. For an ideal chain, drance of fluid diffusion. Replacing fluid particles with an
=1/2, andk’@(k) ~1 in the scaling regime. It is therefore equal number of matrix particles with the same size de-
customary to plok®a(k) versusk on what is called a Kratky ~creases the diffusion of fluids. This trend can be reversed if
plot. the matrix particles are larger than that of fluid particles,
An important difference between a diffusing particle and ahowever, even when the total volume fraction is fixed. The
polymer chain is that in the former case the location of eaclway the matrix structure is prepared has also great impact on
monomer is arbitrary, while in the latter it arises from chemi-the fluid diffusion, especially at high matrix volume frac-
cal interactions. The unit of wave vectkrfor a given time  tions. Although the static correlations between fluid and ma-
step is(oy) 1, Wherea,, is the average displacement of eachtrix particles are similar for the different preparation meth-
fluid particle during intervalAt. The value ofo, was  ods, the diffusion coefficient can be different by an order of
0.1485;, 0.613y4, 1.340¢, and 3.19y; for At=0.1, 1, 10, magnitude. Therefore, the dynamic behavior of fluids cannot
and 100, respectively. We use a reduced variliblg instead be described using only static information. Simple exten-
of kin analyzing the trajectories. We average over all trajecsions of theories for mixtures to this system by setting the
tories of all particles for a given state point. mass of the matrix spheres to infinity therefore fail. We also
Fluid particles without disordered matrix show diffusive anticipate that mode-coupling theories, which rely only on
behavior at all time scales except at very short-time scalestatic input regarding the system, will also fail.
when the ballistic motion is observed. A Kratky plot there-  The single-chain structure factai(k), which is popularly
fore shows linearly increasing behavior for shattand a  used in polymer community, can be used to analyze the fluid
plateau behavior for large enougtt. w(k) in a disordered behavior at different time scales. Unlike neat fluidlsiids
matrix is very different from that in neat fluids, with quali- without disordered matrix fluids in disordered matrix show
tatively different behavior on different time scales. Figure 7different behavior ofw(k), depending on the time scale stud-
depicts (ko) ?w(k) as a function ofkay, for four different  jed. At very short-time scales, there is a negative slope in
values of At, and for ¢;=0.1 and ¢,=0.2. For At=0.1, Kk2w(k) suggesting the trajectories are localized. On longer
(karp)?w(k) shows a negative slope in the rangekof,;=1 time scales, particle trajectories are more extended than a
-4, which suggests that particle motion in the presence ofandom walk and normal diffusion is recovered on very
immobile disordered matrix is localized at a local region atlong-time scales. This change in particle diffusive behavior
this short-time scale, i.e., the polymer chain is collapsednight be the signature of the hopping process.
(v<<0.5). As the time step is increased Ad=1, the negative We conclude that the dynamics of simple hard sphere lig-
slope disappears but a plateau region is seen ar@uRd  uids in quenched random matrix is very interesting. The ef-
=4-10 in (kos)?w(K), indicating that particles diffuse nor- fect of fluid-fluid and fluid-matrix interactions, and the struc-
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